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The reaction of benzyl alcohol with 3,4,6-tri-O-acetyl-D-glucal has been investigated
with several heteropoly compounds, and the optimal catalyst is 12-tungstophosphoric
acid supported on carbon. In the presence of this catalyst, various alcohols gave the
corresponding alkyl and aryl 2,3-unsaturated glycopyranosides in excellent yields and
good anomeric selectivity under solvent-free condition. 4,6-Di-O-acetyl-2,3-dideoxy-α-
D-erythro-hex-2-enopyranosyl cyanide and ethyl 4,6-di-O-acetyl-2,3-dideoxy-1-thio-α-D-
erythro-hex-2-enopyranoside have also been prepared with trimethylsilyl cyanide and
ethanthiol as nucleophiles, respectively. The catalyst could be easily recovered and
reused several times with slight loss of activity. The selectivity to give α-anomers pre-
dominantly did not show any change in all runs.

Keywords Ferrier rearrangement; Pseudoglycals; C-Glycosylations; Glycosides; Thio-
glycosides

INTRODUCTION

There are only a limited number of reports on the synthesis of pseudogly-
cals (hex-2-enoglycopyranosides), but it has an important place in the field
of carbohydrate chemistry. These compounds can be further functionalized

Received August 1, 2009; accepted November 4, 2009.
Address correspondence to Ezzat Rafiee, Faculty of Chemistry, Razi University, Ker-
manshah 67149, Iran. E-mail: ezzat rafiee@yahoo.com; e.rafiei@razi.ac.ir

20

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
9
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



Synthesis of Pseudoglycals 21

and serve as chiral intermediate[1,2] in the synthesis of glycopeptide building
blocks,[3] uronic acids,[4] and modified carbohydrates and oligosaccharides.[5]

2,3-Dideoxy sugars, which are easily derived from hex-2-enoglycopyranosides,
are common structural units in many medicinally significant molecules such
as antibiotics.[6,7] For these reasons, preparation of 2,3-unsaturated glycosides
is an interesting goal.

The acid-catalyzed allylic rearrangement of glycals in the presence of al-
cohols, known as Ferrier rearrangement,[8–11] is widely used to obtain 2,3-
unsaturated glycosides. Besides, the synthetic utility of the Ferrier rearrange-
ment is not limited to the preparation of unsaturated O-glycosides, since the
variation of nucleophiles can result in S- and C-glycosides. The catalysts com-
monly employed to form 2,3-unsaturated glycosides are either Lewis acids or
oxidizing agents.[12–21] In addition, the use of protic acid catalysts such as
HClO4/SiO2

[22] has also been reported for the preparation of these compounds.
With a few exceptions, many of these procedures have limitations in terms of
yields, selectivities, reaction temperatures, high amounts of reagent or cata-
lyst, expensive reagent, and equipment. In addition, some catalysts are toxic,
which restrict their applications. As a result, most of these methods do not
satisfy the rule of green chemistry. The establishment of “Green Carbohydrate
Chemistry” is of significant importance as a major branch of “Green Chem-
istry.” Therefore, progressive efforts have been done to introduce new environ-
mentally benign catalysts or safe reaction media. This can be achieved by the
development of strong solid acid catalysts that are stable, regenerable, and
active at moderate temperatures.

Heteropoly acids (HPAs) are promising solid acid catalysts for various or-
ganic reactions.[23] Among them, the catalytic function of the Keggin family
has attracted much attention. Keggin-type HPAs have the general formula
L8-xXM12O40, where L is a countercation (proton, group I and II metals, and
transition metals); X is the heteroatom, also called the central atom (P5+, Si4+,
etc.); x is its oxidation state; and M is the addenda atom (most commonly Mo6+,
W6+, or V5+).[24] These compounds provide a good basis for the molecular de-
sign of mixed oxide catalysts and possess special characteristics that make
them very useful in catalysis; for instance, their highly acidic nature is very
interesting in industrial reactions.[25] In this context, we investigated glycosy-
lation reaction using environmentally benign HPA-based catalysts.

RESULTS AND DISCUSSION

As a part of our endeavor to develop a mild, rapid, and eco-friendly method
for glycosylation reaction, the we explored the use of heteropoly compounds
(HPCs) for Ferrier rearrangement. Successful uses of K5CoW12O40.3H2O as
an electron transfer catalyst in the reaction of 3,4,6-tri-O-acetyl-D-glucal (1)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
9
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



22 E. Rafiee et al.

Table 1: Effect of different catalysts in the reaction of 1 with benzyl alcohola

Entry Catalyst Time (min)
Yield
(%)b

1 H3PW12O40 4 90
2 H5PMo10V2O40 20 41
3 H6PMo9V3O40 20 54
4 H7PMo8V4O40 20 32
5 K7[PTi2W10O40] 30 5
6 [(n-C4H9)4N]5 PMo2W9O39 (Sn2+.H2O) 30 0
7 [(n-C4H9)4N]3 PMo2W9O39 (Sn4+.H2O) 30 13
8 [(n-C4H9)4N]3 PMo2W9O39 (Ti4+.H2O) 30 0
9 [(t-C4H9)4N]4 PW11CoO39 30 0

10 Cs2.5H0.5PW12O40 30 6

aOnly α-anomer was observed.
bIsolated yield after purification by column chromatography and characterized by 1H NMR.

with various alcohols and aryl amines were previously studied in our labora-
tory.[26,27] However, these reactions were performed in CH3CN as solvent and
have not been extended either with S- or C-nucleophiles. In this report, we
describe our results on the interesting use of other HPCs as a catalyst for α-
selective synthesis of pseudoglycals in a solventless system.

Initially, catalytic performance of different HPAs, their salts, and transi-
tion metal-substituted heteropoly anions was investigated in model reaction
(Sch. 1). The results are summarized in Table 1. H3PW12O40 (PW) gave supe-
rior results in terms of yield and reaction time (Table 1, entry 1) while mixed-
addenda HPAs had low activities (Table 1, entries 2–4). HPA salts and metal-
substituted heteropoly anions showed poor or no catalytic activity in the reac-
tion of 1 with benzyl alcohol (Table 1, entries 5–10).

O

OAc

AcO
AcO

1

Solvent-free O

OAc

AcO

O Ph
+

CH2OH

r.t.

Scheme 1: Reaction of 1 with benzyl alcohol.

From environmental and economic considerations, it is desirable to use
HPAs as heterogeneous catalysts. This encouraged us to investigate the ef-
ficiency of PW/support as a catalyst in the reaction of 1 with benzyl alcohol
(Sch. 2). The results are summarized in Table 2. It is assumed that resonance
of the double bond increases the electron density of C3 and exerts its influ-
ence in the selective departure of the OAc group in this position. This reso-
nance makes the allylic oxonium intermediate more stable. [19,21] In all cases,
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Table 2: Effect of different supported H3PW12O40 (PW) catalysts in glycosylation of
benzyl alcohola

Entry Catalyst Time (min)
Yield
(%)b

1 PW/γ -Al2O3 (0.05 g) 60 11
2 PW/K10 (0.05 g) 30 32
3 PW/KSF (0.05 g) 30 41
4 PW/TiO2 (0.05 g) 15 43
5 PW/SiO2 (0.05 g) 10 91
6 PW/C (0.05 g) 5 96
7 PW/C (0.1 g) 3 96
8 PW/C (0.2 g) 2 96

aOnly α-anomer was observed.
bIsolated yield after purification by column chromatography and characterized by 1H NMR.

α-glycosides was exclusively produced. It was found that PW/C is the best
catalyst in comparison with others (Table 2, entries 1–6). Different amounts
of 40 wt.% of PW/C were used in the model reaction (Table 2, entries 6–8). It
was observed that by using 0.2 g of the catalyst, reaction time decreased only
3 min in comparison with 0.05 g of PW/C. Hence, from an economical point of
view, 0.05 g of 40 wt.% PW/C was selected as the best case for more investiga-
tions.

1 +
CH2OH PW/support

Solvent-free, r.t.

O

OAc

AcO

O
Ph

Scheme 2: Reaction of 1 with benzyl alcohol in the presence of supported PW.

To examine the universality of PW/C in glycosylation reaction, this cat-
alyst was applied to the reaction of various nucleophiles with 1 in solvent-
free condition (Table 3). With alcohols as nucleophile, the reactions were com-
pleted within less than 10 min, except for cyclohexanol (Table 3, entries 1–4).
In the case of p-methoxyphenol (Table 3, entry 5), the reaction proceeded
smoothly to afford p-methoxyphenyl-4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-
hex-2-enopyranoside, whereas in our previous work,[26] K5CoW12O40.3H2O
was not efficient for phenols with different substitutions. Me3SiCN was
rapidly reacted with 1 to obtain 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-
2-enopyranosyl cyanide in excellent yield (Table 3, entry 6). When EtSH was
used as nucleophile (Table 3, entry 7), in addition to Ferrier product (4,6-
di-O-acetyl-2,3-dideoxy-1-thio-D-erythro-hex-2-enopyranoside), an anomeric
mixture of ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-D-hexopyranoside was also
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1 + EtSH
PW/C

CH3CN, r.t.

O
OAc

AcO +
O
OAc

SEt SEt

(50%, α:β = 9:1) (40%, α:β = 8:2)

AcO
AcO

Scheme 3: Reaction of 1 with ethanethiol.

formed with 40% yield (Sch. 3). Due to the volatility of EtSH (bp. = 35◦C), this
reaction was performed in CH3CN as solvent.

The reusability of the PW/C was studied in the reaction of 1 with benzyl
alcohol. After each run, the reaction mixture was diluted with CH3CN; the
catalyst was removed by filtration, washed with CH3CN, and calcinated at
150◦C for 1 h before reusing. We have found that 40 wt.% of PW/C can be
reused several times with slightly loss of activity. The yield of the product for
model reaction decreased to 85% after the fourth run (Fig. 1). The selectivity to
α-anomer did not show any change and α-glycosides was exclusively produced
in all runs.

EXPERIMENTAL

Materials
PW was purchased from Aldrich and H3PMo12O40 hydrate from Merck.

Activated carbon, KSF, and K10 montmorillonite were purchased from Fluka.
Aerosil silica and titania were used from Degussa. γ-Alumina was obtained

0

20
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0 1 2 3 4 5
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Y
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)

First run

Second run

Third run

Fourth run

Figure 1: Reusability of 40 wt.% of PW/C; only α-anomer was observed in all runs.
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from Aldrich. [(n-C4H9)4N]Br, [(t-C4H9)4N]Br, Cs2CO3, TiCl4, SnCl4, sodium
molybdate, and disodium hydrogen phosphate were obtained from Merck;
sodium metavanadate and SnCl2 were used from Aldrich and Fluka, respec-
tively.

Catalyst Preparation
H3+xPMo12-xVxO40 (x = 2–4), K7PTi2W10O40, and [(t-C4H9)4N]4 PW11CoO39

catalysts were prepared and purified by literature procedures.[33–35] The
acidic salt Cs2.5H0.5PW12O40 was prepared from the Cs2CO3 and PW solu-
tion according to the literature method.[36] The syntheses of [(n-C4H9)4N]5

PMo2W9O39 (Sn2+.H2O), [(n-C4H9)4N]3 PMo2W9O39 (Sn4+.H2O), and [(n-
C4H9)4N]3 PMo2W9O39 (Ti4+.H2O) were started with the preparation of
α-K7PMo2W9O39.19H2O from β-Na8HPW9O34.24H2O and sodium molybdate
according to the procedures that were described in our previously published
papers.[37]

All supported catalysts were prepared by the impregnation method. The
solution of PW was used to impregnate activated carbon, silica, alumina,
titania, KSF, and K10 montmorillonite as supports, followed by drying as
described in our previously published papers.[38,39]

Glycosylation Using Alcohols and Phenol
The D-glucal (1) (1 mmol), an alcohol or phenol (1.5 mmol), and 0.05 g of

catalyst were added to a Pyrex tube fitted with a ground glass joint. These
compounds were ground together using a glass rod at rt (ca. 25◦C). Progress of
the reaction was followed by TLC. The mixture was diluted with CH3CN (2 ×
5 mL) and filtered. The filtrate was quenched with saturated NaHCO3 (10%,
25 mL) and then extracted with CH2Cl2 (3 × 25 mL). The organic layer was
dried over anhydrous sodium sulfate, filtered, and concentrated. The residue
was purified by plate silica gel chromatography to afford the pure product.
Products were characterized from their NMR spectral data.

Glycosidation Using Me3SiCN
A mixture of 1 (1 mmol), Me3SiCN (1 mmol), and 0.05 g of 40 wt.% PW/C

was added to a Pyrex tube fitted with a ground glass joint and crushed using a
glass rod at rt (ca. 25◦C). Progress of the reaction was followed by TLC. The re-
action mixture was diluted by diethyl ether (2 × 5 mL) and poured into mixture
of 1 M HCl (10 mL) and diethyl ether (5 mL). Extractive workup with EtOAc (3
× 15 mL) followed by column chromatography afforded pure glycoside, which
was characterized from its NMR spectral data.
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Synthesis of Pseudoglycals 27

Glycosidation Using EtSH
A solution of 1 (1 mmol) and EtSH (5 mmol) in CH3CN (2 mL) was treated

with 0.05 g of 40 wt.% PW/C and stirred at rt (ca. 25◦C). Progress of the re-
action was followed by TLC. The reaction mixture was extracted with EtOAc,
dried, and concentrated. The resulting crude product was subjected to column
chromatography to afford the pure product, which was characterized from its
NMR spectral data.

CONCLUSIONS

In summary, various nucleophiles reacted with 3,4,6-tri-O-acetyl-D-glucal to
yield the corresponding 2,3-unsaturated glycosides in good to excellent yield
and short reaction times with high to excellent α-selectivity. The catalytic ac-
tivity of PW/C is remarkable and the use of inexpensive and reusable catalyst
under solvent-free conditions makes this method a quite simple, environmen-
tally benign, and eco-friendly procedure to prepare various 2,3-unsaturated
glycosides.
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